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Abstract
We study vibrational normal modes in graded diatomic chains wherein the
masses m1 of one type of atom vary linearly with the gradient c while those
of the other type m2 remain constant, in order to examine the diatomic effect
on one-dimensional graded elastic chains. By means of a band overlapping
picture—a convenient diagrammatic approach—we found six distinct kinds of
vibrational mode, four of which are localized and two extended. Depending on
their characteristics, we are also able to categorize these modes into acoustic and
optical modes. Furthermore, investigating transitions among these rich normal
modes we construct the global phase diagrams of vibrational modes in the ω–c
space. All results are verified by numerical calculations in finite size systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In inhomogeneous media, electronic eigenstates or excitations can become spatially localized,
as compared to their extended counterparts in homogeneous systems or perfectly crystalline
materials with high point group symmetry. The localization phenomena occur mainly due
to either interference or potential confinement. Examples in the former case include the
Anderson localization of quantum and classical waves [1, 2] and fractons in fractal systems [3],
while in the latter case notable examples are impurity states in semiconductors [4, 5], laser
cooling [6], pinning of charge-density-waves [7], and electronic confined states in quantum
dots [8]. Concomitantly, localization–delocalization (LD) transitions may occur in both of
these two cases, alternating macroscopic properties of systems. In terms of understanding the
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fundamental nature of localization and managing the spectral bands, there are a wider range of
systems under study, such as random media, quasi-periodic systems, meta-materials, as well as
graded systems [9]. This topic has been of great interest over the past decades and is an urgent
problem associated with the current rapid advancement in nanofabrication techniques. Since
new types of localization or the LD transitions may lead to novel functions of materials, it is
important to study the localization problem in various systems. In fact, localization properties
of waves are deeply related to many applications, ranging from semiconductor-device physics
to the random laser [10].

Recently, to find exotic localized modes, we examined in detail vibrational normal modes
in graded elastic chains [11] and networks [12]. From simple lattice models it has been shown
that novel localized vibrational modes peculiar to graded elastic lattices, named ‘gradons’,
possess an unusual spatial extent and exhibit a new kind of LD transition, offering a fine-
tuning spectral functionality. The results provide a way to control localized modes and
suggest an efficient method for engineering phonon dispersion in solids. In addition, these
discoveries have been successfully applied to manipulate coupled plasmon modes in graded
plasmonic crystals, providing a great opportunity to employ a variety of plasmonic gradons
in achieving deep-subwavelength optical energy confinement and routing [13]. In particular
gradons are relevant to recent exploration of localized vibrational normal modes in optically
bound structures [14]. These photonic clusters demonstrate exotic dynamics because of the
complicated optical binding forces featuring a gradient [15], which open a new gate for
studying elastically inhomogeneous systems by irradiating light illumination.

Previous studies of gradon localization have been focused on monatomic graded systems.
While monatomic materials such as simple metals are rather rare in a wide range of actual
materials, it is necessary to examine excitations in graded diatomic (or polyatomic) lattices
which are well-devised models for designing graded solids. From the non-universal nature of
gradons, it can be expected that characteristics of gradons excited in graded diatomic lattices are
largely different from those in graded monatomic ones. In this paper, we use both an analytical
(diagrammatic) approach and numerical calculations to identify various harmonic vibrational
modes of graded diatomic chains (GDCs) and figure out the phase diagram of eigenmodes.
Using the graded mass model dramatically simplifies the analysis but retains the underlying
physics dominating the dynamics, due to the duality of masses and force constants. Our main
goal in this paper is to understand the nature of localized vibrational modes in GDCs and clarify
essential differences from gradons in graded monatomic chains by extending the arguments
of [11]. In the following section, we present our diatomic model with graded masses and
elaborate the diagrammatic approach. This approach has been proven powerful, and helps us to
construct the global phase diagrams in section 3. In this section, our analytical predictions are
verified by numerical calculations for finite size systems. Finally, we provide a brief summary
in section 4.

2. Model and the band overlapping picture: infinite chains

The diatomic model with graded masses, which we study here, is schematically shown in
figure 1(a). Two types of atom, namely type-1 and type-2, are alternatively placed in a
one-dimensional direction. Masses of type-1 and type-2 atoms are denoted by m1 and m2,
respectively. The force constants of linear springs connecting type-1 to type-2 atoms and type-
2 to type-1 atoms are given by K1 and K2, respectively. In our GDC, masses are not constant
but vary linearly along the chain. For simplicity, we fix m2 as a constant, impose a linear
decrease in m1(n), where n denotes the site index for type-1 atom, and assume K1 = K2. That
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Figure 1. (a) Schematic figure of a graded diatomic elastic chain. m2(n) remain identical while
m1(n) decrease linearly from m1(1) to m1(N). (b)–(d) Typical configurations in the graded profiles
of m1 and m2 with respect to the cell number n.

is, we employ the following profiles of masses and the force constants:

m1(n) = m1(1) − c
n − 1

N − 1
, (n = 1, 2, . . . , N) (1a)

m2(n) = m2, (n = 1, 2, . . . , N) (1b)

K1 = K2 = K , (1c)

where c gives the strength of the gradient and N denotes the total number of cells which are
a pair of type-1 and type-2 atoms. It should be remarked that N can take either a finite or
an infinite number. Depending on the parameters m1(1), m2 and c, we have three possible
situations as depicted in figures 1(b)–(d), namely m1(1) � m2 > m1(N) (figure 1(b)),
m1(1) > m1(N) � m2 (figure 1(c)) and m2 > m1(1) > m1(N) (figure 1(d)). The equations of
motion thus read [18, 19]

m1(n)ün = −K [2un − vn − vn+1], (n = 1, 2, . . . , N) (2a)

m2(n)v̈n = −K [2vn − un − un−1], (n = 1, 2, . . . , N), (2b)

where un and vn are, respectively, the displacements of type-1 and type-2 atoms in the nth cell
and the derivative is taken with respect to time t .

To make our discussions on GDCs easier, let us first review the well known results of the
phonon dispersion in a homogeneous diatomic chain (HDC) with c = 0. In such a system, the
phonon dispersion relation ω(k), namely frequency ω versus wavenumber k, has two branches,
according to the + and − signs in the following equation [16, 17]:

ω2
ac,opt(k) = ω2

0

2

[
1 ∓

√
1 − β2 sin2 ka

2

]
, (3)

where

ω2
0 = 2K (mH + mL)

mHmL
, (4a)

β2 = 4mHmL

(mH + mL)2
, (4b)

and a is the lattice constant. In this special case, we use mL and mH (�mL) instead of m1

and m2. When mL = mH, the relation (3) becomes equivalent to that of a homogeneous
monatomic chain. Normally, the lower frequency acoustic branch ωac (the higher frequency
optical branch ωopt) has its lower (upper) and upper (lower) bounds at the zone centre (k = 0)
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Figure 2. Mode classification by the band overlapping picture. (a) The dispersion relation
of a homogeneous diatomic chain with c = 0 and (b)–(f) representing cases 1–5 in table 1.
Abbreviations in these figures are defined in the text. Only the positive k value of the first Brillouin
zone is shown.

and the zone boundary (k = π/a), respectively. The monotonicity of each dispersion relation
is crucial for analysing various modes in a GDC and constructing the global phase diagram by
our diagrammatic approach. A typical two-branch dispersion is depicted in figure 2(a) for a
HDC. Let us denote such a system as HDC[mL, mH]. The three band edges in figure 2(a) are
determined by the mass ratio α ≡ mH/mL and the effective mass μ = mLmH/(mL + mH). It
is worthwhile remarking that the upper bound of the acoustic band is determined only by the
heavy mass mH, while the lower bound of the optical band depends only on the light one mL.
We will see later that this is the origin of the vanishing gap when the profile of m1(n) intersects
m2 in a GDC.

Let us consider vibrational modes in an infinite GDC defined by equation (1) with
N → ∞. To this end, we divide the whole GDC into small segments. The size of these
segments is so small that the graded masses m1(n) can be regarded as a constant in each
segment, but still infinite. Namely, we regard the whole GDC as the infinite number of
infinite homogeneous diatomic chains (segments) with constant m2 and m1 depending on
segments. Although these segments are connected to each other by the linear springs K ,
the ratio of the number of these inter-segment springs to that of all the springs included in
the whole GDC is infinitesimal. Therefore, we can neglect contributions from these inter-
segment couplings to spectral properties of the GDC. In this limit, the original GDC is
constructed by isolated segments. Since vibrational modes in the i th segment with constant
masses mi

1 and m2 are completely described by equation (3) with mH = max(mi
1, m2) and

mL = min(mi
1, m2), the whole GDC possesses dispersion relations with possible values of mi

1
ranging from mmin

1 = m1(1) − c to mmax
1 = m1(1) simultaneously. It should be noted that

the wavenumber k in equation (3) is only locally defined in the GDC because k cannot be a
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Table 1. Possible relations between characteristic frequencies ω1, ω2, ω3, ω4 and ω5 and
corresponding relations in masses m1 and m2. Corresponding figures 1, 2, 3, and 5 are also listed
in the columns of F 1, F 2, F 3, and F 5, respectively.

Case Frequency relationship Mass relationship F 1 F 2 F 3 F 5

1 ω1 � ω2 < ω3 < ω4 � ω5 m2 < mmin
1 ; 1

m2
� 1

mmin
1

− 1
mmax

1
1(c) 2(b) 3(a) 5(b)

2 ω1 < ω3 � ω2 � ω4 < ω5 mmin
1 � m2 < mmax

1 ; 1
m2

� 1
mmin

1
− 1

mmax
1

1(b) 2(c) 3(a) 5(c)

3 ω1 < ω3 < ω4 � ω2 < ω5 mmin
1 � m2 < mmax

1 ; 1
m2

< 1
mmin

1
− 1

mmax
1

1(b) 2(d) 3(a) 5(d)

4 ω3 � ω1 � ω2 � ω4 � ω5 mmax
1 � m2; 1

m2
� 1

mmin
1

− 1
mmax

1
1(d) 2(e) 3(b) 5(e)

5 ω3 � ω1 < ω4 � ω2 < ω5 mmax
1 � m2; 1

m2
< 1

mmin
1

− 1
mmax

1
1(d) 2(f) 3(b) 5(f)

conserved quantity due to a lack of translational symmetry. In a HDC, the spectral band can be
characterized by three band edge frequencies as seen in figure 2(a), namely

√
2K/μ,

√
2K/mL

and
√

2K/mH. From the monotonicity of the dispersion relation, the spectrum of the whole
GDC has the following five characteristic frequencies corresponding to these three frequencies:

ω1 =
√

2K

mmax
1

(5a)

ω2 =
√

2K

mmin
1

(5b)

ω3 =
√

2K

m2
(5c)

ω4 =
√

2K

[
1

mmax
1

+ 1

m2

]
(5d)

ω5 =
√

2K

[
1

mmin
1

+ 1

m2

]
. (5e)

Depending on the relation between masses mmin
1 , mmax

1 and m2, we have five possible
relationships between ω1, ω2, . . . , ω5 as shown in table 1. We discuss in detail the spectral
property and mode profiles in the case of ω1 � ω2 < ω3 < ω4 � ω5 corresponding to
m2 < mmin

1 and 1/m2 � 1/mmin
1 − 1/mmax

1 (‘case 1’ in table 1) as an example. This situation is
illustrated in figure 2(b). From the viewpoint that the whole GDC is constructed from a number
of segmental HDCs, the GDC has ‘local’ acoustic dispersions falling between the (blue) dashed
line (ranging from 0 to ω1) and the (red) dash–dotted line (ranging from 0 to ω2). For the
optical branch, the local optical dispersions lie in the region between the (blue) dashed line
(ranging from ω4 to ω3) and the (red) dash–dotted line (ranging from ω5 to ω3). Therefore,
there exist vibrational eigenmodes in the frequency ranges from 0 to ω2 and ω3 to ω5. We
have the band gap between ω2 and ω3 and the highest band edge at ω = ω5. In the frequency
region [0, ω1], all acoustic dispersions of any segmental HDCs share this region. This implies
that all segmental HDCs can vibrate at a common frequency. These equi-frequency modes
construct spatially extended vibrational excitations in the GDC. We call such extended modes
over the chain ‘acoustic phonons’ (APs) after conventional terminology, though eigenmodes in
this region are somewhat different from the usual acoustic phonons in homogeneous lattices
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because the (local) wavelength in our AP depends on the position in the GDC. In the frequency
region between ω1 and ω2, however, some of the dispersion relations of HDCs (i.e. local
dispersions in the GDC) do not occupy part of this region. Let us consider a mode belonging
to a specific frequency ω within the region [ω1, ω2]. Segmental HDCs with masses mi

1 less
than m∗ ≡ 2K/ω2 can vibrate with this frequency. The frequency ω is, however, beyond the
upper band edge of the acoustic branch of segmental HDCs with masses mi

1 larger than m∗.
This implies that the vibrational mode of ω in the GDC has finite amplitudes only in a part with
m1(n) < m∗, namely localized in a lighter part of the GDC. We call these modes ‘acoustic light
gradons’ (ALGs) after the gradon [11] excited in graded monatomic lattices (see figure 2(b)).
This band overlapping picture can be also applied to the optical band. The frequency region
between ω3 and ω4 is shared by all optical dispersions of any segmental HDCs. Thus, we can
expect extended ‘optical phonons’ (OPs) in the GDC. On the contrary, the local dispersions only
partially occupy the frequency region [ω4, ω5], which implies that optical modes at frequencies
contained in this region are localized in lighter parts of the GDC as in the acoustic case. These
modes are referred to as ‘optical light gradons’ (OLGs). From these arguments based on the
band overlapping picture, we can summarize the characteristics of vibrational modes in the
GDC satisfying the condition ω1 � ω2 < ω3 < ω4 � ω5 as depicted in figure 2(b).

For the other four cases listed in table 1, it is also efficient to apply our diagrammatic
approach for classifying vibrational modes in the GDC. Our results are summarized in
figures 2(b)–(f). It should be noted that the band gap disappears for systems with mass
profiles like figure 1(b). This is because we have a band gap when the heaviest mass among
lighter masses (mL) of HDCs is less than the lightest mass among heavier masses (mH). If
the profile of m1(n) intersects m2, these two masses coincide, which leads to the vanishing
gap. In figures 2(c)–(f), we see the region of ‘optical heavy gradons’ (OHGs). These modes
are localized in heavier parts of the GDC. In the case of figure 2(c), for example, the optical
dispersions of the segmental HDCs with mi

1 less than m2 do not fully occupy this region. This
shows that optical vibrational modes with a frequency ω satisfying ω2 > ω > ω3 do not exist
in HDCs with mi < 2K/ω2 and the eigenmode belonging to the frequency ω is localized in
the heavier part with m1(n) > 2K/ω2 in the GDC. The ‘optical light-heavy gradons’ (OLHGs)
found in figures 2(d) and (f) are localized in spatial parts with intermediate m1(n). In contrast to
the fact that all types of gradons discussed so far are localized by half in the GDC, i.e. localized
in a lighter half or a heavier half, modes in the OLHG region are completely confined within
the GDC. For a frequency ω between ω2 and ω4 in figure 2(d) or (f), segmental HDCs with mi

1

satisfying ω >

√
2K (1/mi

1 + 1/m2) cannot vibrate, because the upper optical band edges

for these HDCs are less than the frequency ω. Also, HDCs with mi
1 < 2K/ω2 have no

vibrational modes at this frequency, because the lower optical band edges exceed the frequency
ω. Therefore, the eigenmode with ω in the GDC should be localized in the spatial region of
2K/ω2 < m1(n) < (ω2/2K − 1/m2)

−1.

3. Global phase diagrams and numerical results

By the characteristic frequencies defined in equations (5a)–(5e) and the diagrammatic scheme,
we are able to construct phase diagrams of vibrational modes in the ω–c space, as shown in
figure 3. The horizontal axis of these figures represents the strength of gradient c scaled by
mmax

1 . This quantity varies from 0 to 1 so that m1(n) is always positive and decreases from
the left-hand side to the right-hand side. Five lines in these figures indicate the characteristic
frequencies defined by equation (5) as functions of c/mmax

1 . Figure 3 clearly shows that there
exist rich phases, dubbed in this work as acoustic phonon (AP), acoustic light gradon (ALG),

6
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Figure 3. Global phase diagrams for graded diatomic chains with (a) mmax
1 > m2 and (b) mmax

1 <

m2 obtained by the band overlapping picture. The five curves represent ω1 = √
2K/mmax

1

(· · · · · ·), ω2 = √
2K/(mmax

1 − c) (——), ω3 = √
2K/m2 (— · —), ω4 = √

2K [1/mmax
1 + 1/m2]

(– – –) and ω5 = √
2K [1/(mmax

1 − c) + 1/m2] (— · · —), respectively. Notice that ω2 and ω5

asymptotically meet at c/mmax
1 = 1.

optical phonon (OP), optical light gradon (OLG), optical heavy gradon (OHG) and optical light-
heavy gradon (OLHG). The gap (G) appears for mmax

1 > m2 and c/mmax
1 < γ1(≡1−m2/mmax

1 )

(figure 3(a)) or for mmax
1 < m2 (figure 3(b)). In both parts of 3, the horizontal line of

ω = ω4 (dashed line) intersects the line of ω = ω2(c) (solid line) at c/mmax
1 = γ2 ≡

1 − m2/(mmax
1 + m2) (as marked by ). In figure 4, we show the various normal modes at

several representative points (marked as •) in the phase diagram of figure 3(a). These modes
are calculated by diagonalizing the dynamical matrices for equation (2) with N = 500, which
are consistent with the mode profiles predicted in the preceding section for infinite GDCs. To
complement our results, we present the density of states (DOS) of an infinite GDC. Based on
the idea that the GDC is divided into small segments of HDCs, the DOS is given by

DGDC(ω) = 1

c

∫ mmax
1

mmin
1

DHDC(m1, m2; ω) dm1, (6)

where

DHDC(m1, m2; ω) = 2ω

π
Re

⎧⎨
⎩ |ω2

0 − 2ω2|[
(ω2

0 − ω2)[ω2 − ω2
opt(π/a)][ω2 − ω2

ac(π/a)]ω2
] 1

2

⎫⎬
⎭ (7)

is the analytical DOS for a HDC[m1, m2] [16, 17]. Here, the frequencies ω0, ωac and ωopt are
defined by equations (3) and (4) with mL = min(m1, m2) and mH = max(m1, m2). Results
for several combinations of m1(1) and c are shown in figure 5 where m2 = 1. The DOS
curves indicate complicated but interesting behaviours, which agree well with the numerical
calculations (not shown here) for finite GDCs. The different modes and their transitions labelled
in figure 2 are clearly reflected in the DOS curves with some singularities (for those that is not
remarkable, we added a downward arrow above). In figure 5(b), for example, we have acoustic
phonon (AP) modes in the frequency region of 0 < ω � ω1, and acoustic light gradon (ALG)
modes for ω1 < ω � ω2. It is clearly seen that GDC retain the two-band structure but the gap
may vanish when the profiles of m1(n) and m2 cross each other, as we remarked previously. Re-

7
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Figure 4. Numerically calculated normal modes at the representative points (•) indicated in the
phase diagram of figure 3(a). The system size N in numerical calculations is 500.

entrant transitions as ‘extended’ → ‘localized’ → ‘extended’ modes with increasing frequency
are features of the GDC. The correspondence between figures 1, 2, 3 and 5 are shown in table 1.

4. Summary

In conclusion, we study the nature of vibrational modes excited in one-dimensional graded
diatomic chains (GDCs) and obtain the global phase diagram of modes. We identify the
various mode types and transitions among them by an efficient method in the sprit of band
overlaps of segmental homogeneous diatomic chains (HDCs) into which the whole GDC is
divided. The diagrammatic approach can tell us directly how the gradient in masses can affect
the spectral properties and mode patterns. In contrast to the case of single band models [11],
we show rich varieties of vibrational excitations, especially localized modes (gradons) in a
GDC. The results we obtained not only provide deep insight into vibrational excitations in
GDCs, assisting the design and exploitation of unique wave functional materials—graded
functional materials [9], which are seeing dramatically increasing potential applications ranging
from rocket heat shields to human implants—but also shed new light on the dynamics of
various optically bounded clusters and suggest a new and powerful way towards phonon band
manipulation.

In contrast to HDCs, a single band (i.e. zero gap) spectrum is possible in GDCs when any
part of m1(n) becomes equal to m2. Although m2 is set to be constant for any cell n in our

8
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Figure 5. Densities of states (DOSs) for vibration modes in typical graded diatomic chains (GDCs).
The largest mass m1(1) at the left extremity and gradient coefficient c are indicated in each panel.
(a) The DOS for a homogeneous diatomic chain. (b)–(f) The representative DOSs for GDCs
corresponding to cases 1–5 in table 1, respectively.

present work, our findings provide rich information for more general GDCs with graded m1(n)

and m2(n). For instance, it can be expected that the acoustical-optical gap vanishes as long
as general profiles of m1(n) and m2(n) cross each other. In addition to the discovery of the
various localized modes, named gradons, different from localization due to impurity, disorder,
nonlinear effects, or finite size effects [20, 21], we particularly emphasize the efficiency of
the diagrammatic approach based upon the band overlapping picture. This approach is also
applicable for any type of inhomogeneous infinite system which can be regarded as an ensemble
of homogeneous segments. Due to the non-universal nature of the localized modes in GDCs,
further interesting results are anticipated for polyatomic lattices in higher dimensions if a
gradient is introduced along a certain direction. It is also possible to extend our method
to anisotropic lattices [24], lattices with second-neighbour interactions [25] and lattices with
on-site potentials [26]. In view of the fact that such a system demonstrates rich varieties of
excitations, it is rewarding to explore phonon-polaritons associated with these lattice vibrations
coupled to electromagnetic waves.
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Our theoretical predictions presented here can be confirmed experimentally, for example
by investigating vibrational modes in optically bound chains [15]. A plasmonic waveguide
consisting of a chain of metallic nanoshells [22] may also demonstrate a near field
electromagnetic analogy to our model. It is also possible to develop much simpler
experiments [23] to verify the reported results.
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